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Classical solutions of cr models 

H Mitter and F Widder 
Institut fur Theoretische Physik, Universitat Graz, Austria 

Received 13  December 1979, in final form 25 March 1980 

Abstract. cr models with linear realisations of U(N) and O ( N )  symmetries are studied 
without imposing a constraint on the modulus of the field vector. Exact solutions in 
four-dimensional Minkowski space are presented, which have the form of plane/spherical 
waves. The singularities of the solutions as well as those of the Lagrangian density and the 
energy-momentum tensor are discussed. All results hold under the assumption that 
space-time and internal symmetry of freedom are not mixed. 

1. Introduction 

This paper continues a previous investigation (Mitter and Widder 1979, referred to as I) 
on classical solutions of non-linear field theories with quartic self-coupling in the 
Lagrangian. The analysis of I, which dealt with one complex scalar field, shall be 
extended here to a multiplet of N complex fields, whereby the theory has the internal 
symmetry group U(N). The special case of N real fields with O ( N )  symmetry is always 
contained. The quantum counterpart for N = 4 has been investigated in the past as a 
model for chiral symmetry (see e.g. Lee 1972), whereby the four real fields are 
identified with the pion and a u meson, which has provided the name for the model. 
More recently the interest has shifted to classical solutions, which could eventually be of 
interest in connection with the confinement problem. In particular, solutions of the 
instanton/meron type have been established and investigated for u models, whereby 
the real field multiplet is required to form a unit vector in O ( N )  space (De Alfaro et a1 
1978). In another interesting class of models the field multiplet is required to form a 
complex unit vector (Eichenherr 1978, D'Adda eta1 1978). We shall not impose such a 
constraint, but shall start, as in I, from simple symmetry requirements in coordinate 
space, which allow for relatively large classes of exact solutions. In some cases solutions 
with a constant value of the U(N) or O ( N )  modulus of the field vector will be contained 
in these classes. For the coordinates we shall consider the four-dimensional Minkowski 
space. We shall pay particular attention to the Lagrangian and the energy-momentum 
tensor as computed with these solutions. 

2. Field equations and physical quantities 

The field is described by a set of N complex functions 

( P k ( X )  k = 1 , .  . . , N 
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3276 HMitter and F Widder 

with arguments x w  in Minkowski space. The Lagrangian density is 

where repeated Latin indices have to be summed from 1 to N. The canonical formalism 
provides the field equation 

o p k  - A P k ( P ? P i )  0. ( 2 )  
As a consequence of the invariance of L under U ( N )  rotations of the field we obtain 

continuity equations for the N 2  vectors 

kr - l (p td@cpi  -cpia”cpt) .  ( 3 )  

T @ ~  =$[aclcptavcpk + a Y ~ t a ~ c p I ( ] - g @ ” ~ .  ( 4 a )  

M @  - .  

The canonical energy-momentum tensor is 

We shall also consider the improved tensor (Callan et a1 1970) 

( 4 b )  e@” = T’LY - ? _  
6(aw’au -g’””o)cpCcpk 

which gives the same global generators of translations and Lorentz transformations. 
Both T F Y  and O F y  fulfill continuity equations. 

We shall write the field in the form 

p k  ( x )  = r(x)ek ( x )  

r = r *  e t e k  = 1 e t a f i e k  + e k a F e t  = 0 

e?Oek + e k O e t  = -2(a”et)(a,ek). 

( 5 )  
where ek transforms as a unit vector under U ( N )  rotations 

Then M F  takes the form 

M ~ I  =ME“ =ir2(eta@er-el~Fe:). 

The field equation becomes 

ek(Or  - Ar3) + 2(#r)(d,ek) + rOek = 0. 

By simple manipulation we obtain two equations: one of them is again the continuity 
equation for M 

a,MfI = 0 (8) 

whereas the other one can be written in the form 

3 M 2  O r - A r  - ~ = 0  
r 

where we have used the abbreviation 

M 2  = r‘((a,e:)(d@ek) = &ME,klhfgl -$M;,kkMz. 

The Lagrangian density becomes 

(9) 
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and the energy-momentum tensors read 

From the last formula one may easily check, that the trace of 0 vanishes, as must be the 
case. In addition it is evident, that the two tensors are identical for all solutions with 
constant r. 

In order to find solutions of the continuity equation (8) we shall start from an ansatz 
for M of the form 

MCI = iq”Lkl (13) 

with constant LEI = -Llk and 

a”q” = 0. (14) 

This is the simplest possibility and means that there is no mixing of space-time and 
internal-symmetry degrees of freedom. For M 2  we have 

M 2  = q”q ” A2 (15)  

with the constant 

(16) 

If we start from an appropriate ansatz for q” fulfilling equation (14), we can solve the 
problem in two steps: first we have to solve equation (9) with (15) for r and then we have 
to determine ek from equation (7) and (13), namely 

ZLnILkl * -$L&LII a 0. 

It is even possible to compute L, T”” and 6”” without knowing e k .  In order to 
demonstrate this we have to observe that one may show by algebraic manipulations of 
equation (17) the relations 

Lkk = ekLkle? LkILzl +LkkL; = -2ekLklLlne;. 

With this we obtain from equation (17) 

r 2 [ ( d ” e E ) ( a ” e k )  + (a”ez ) (a”ek) ] /2  = q”q”A2/r2 (18) 

and all terms in L, T”” and e”” depend only on r and its derivatives. 
If we have N real fields (i.e. the O(N)  CT model) the corresponding formulae are 

obtained by omitting the factor i in equations (3), (7) and (13) and omitting the asterisk 
everywhere. Since the diagonal elements Lkk vanish in this case, we have N ( N  - 1 ) / 2  
instead of N 2  conserved quantities (3). 
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3. Plane waves 

Here we shall start from the simplest possible choice: we assume, that q” is proportional 
to a constant vector p”  (which is not lightlike; the case p 2  = 0 is considered in § 6 ) .  In 
order to obtain plane-wave solutions, we shall furthermore assume, that r depends on x 
only via 

r ( x )  = R ( T )  T = J m p p ”  g = A l p 2 .  (19) 

From relations (17)  and (18)  we observe that ek also should depend only on 7 

ek = ek(T). (20)  

Denoting the derivative with respect to T by a dot and choosing 

q” = J M P ”  (21)  

we obtain from equation (17)  

R2(e:dr-elt?)=Lkl 

which we shall use in § 5 to determine ek. The equation for R is obtained from (9) and 
reads 

2 - €R3- A 2 / R 3  = 0 (23)  
where E is the sign of g. All solutions of this equation have been given in I, § 3 (see 
formulae (1)-(111)) in terms of Jacobian elliptic functions. The only difference is the 
relation (I, 21)  between the constants appearing in the solutions and the initial values, 
which has to be replaced by 

D 2  = 4A2 c = ~ C R :  - R ;  - R;. (24)  

L = ( A / 2 ) ( R 4 - ~ C )  (25)  

The physical densities take the form 

T F U =  (A/2p2)[(p”p” - p 2 g w u ) R 4 - ~ C ( 2 p ” p Y  -g”””p2)] 

and 

The results (25) and ( 2 6 a )  agree with the expressions given in (I, 19). Thus the 
positivity properties of Too are the same as in I. In contrast goo is positive for C < 0, 
irrespective of the sign of A or p 2 .  The improved tensor 8”“ does not depend on the 
explicit form of the solution R ! Now we shall briefly discuss the various solutions for R. 
The degenerate solution (I, 32)  

R = J Z R ~ ( R , , ~  +&)-I 

is obtained only for 

~ = + l  C = A 2 = 0 .  

Too turns out to be positive, but the improved tensor vanishes. The most reasonable 
solutions (if one wants to give a physical interpretation to plane waves at all) seem to be 
those of type 111: since for them R 2  is bounded, L is finite, 8’’ is positive and the 
integrated quantities diverge only for an infinite volume. For the usual (negative) sign 



Classical solutions of (+ models 3279 

of A these solutions correspond to timelike pw. The solution with constant R is 
contained in this set, cf (I, 27). For the opposite sign of p 2  or A we have solutions of type 
I or 11, which assume infinite values at infinitely many points. The improved tensor is 
obviously not affected by these singularities. In spite of the fact that they are present in 
the first term of the Lagrangian (25), they are not interesting for the action: if we change 
L by a divergence 

L j L’ = L -1 6 o ( ( P c ( P k )  

we obtain 
L’ = - A E C / ~  

independent of R .  

4. Spherical waves 

For spherical waves the only relevant direction should be x. Then equation (14) can 
only be satisfied if we take 

qlL -xI*/x4* 

s = / A  1 Ix,xlLI r = l n  Ji E = sgn A sgn x,xl* (27) 

The scalar r should depend only on x 2  in order to obtain a spherical wave. If we use the 
variables (I, 3 5 )  

and write 

r(x) = R ( r ) /  J, qw = eAx’”/s2 

we see from equations (17) and (18) 

ek = ek(7) (29) 
and obtain again equation (22) for the determination of ek. The field equation for R 
becomes 

(30)  
This equation has been solved in (I), § 4 and the solutions are again of the types (I)-(111) 
of I, § 3 .  Instead of (I, 40) we have now to use 

( 3 1 )  

R - R - ER - h 2 / R  = 0. 

D 2  = 4R2 C =  ER:/^+ R i  - d i  - A2/R; .  

The physical densities read 

( 3 2 )  

i33a) 

L=- [ R 4 + ~ ( 2 R 2 - 2 R R  - C ) ]  
2hX4  

[ (x lLx ’ - x2g”’)R + E ( 2 ~  l*x ’ - x2glL””)(2R - 2Rd  - C ) ]  1 
2 A x 6  

T F L Y  = __ 

Formulae (32) and (33a)  agree with (I, 39). As for plane waves we observe, that 6’’ is 
positive for any C < 0 irrespective of the sign of A or x 2 .  The total energy diverges 
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logarithmically (as for meron solutions) due to the x - ~  behaviour of the energy density. 
Since the field equation (2) is invariant under translations and conformal trans- 
formations (cf (I, 9), (I, lo)), any transformed solution is a solution as well. This fact can 
be used to shift the singularity. If we apply a translation by a constant vector -c’* 
followed by aconformal transformation (I, 9) with 6’” = -c’”/2c2, we obtain solutions of 
the form 

where 

The Langrangian density and the improved tensor read 

2C2€ 
L ( q ’ ) = 7 [ ( R 4 ~  -C)U! +R2(a? + u ? ) - ~ R A u + u - ]  

A x + x -  

Here the argument of R is T‘ and we have 
2 1/2  2 112 

a:=x’ (? )  *xi.(?) , 

( 3 6 )  

(37) 

Since 
I 2 a: =4x2 a- = 4 c  a+a- = 4cx 

it is obvious that the singularities are now located at *cl”. 
Finally we shall discuss the various possible solutions for R(.r). It is evident, that 

there are no solutions with r = const. fulfilling our basic ansatz (28). This is evident 
already from equation (9), since constant r implies constant M 2 ,  which cannot be 
fulfilled with qw from equation (28). The degenerate solution (I, 55) 

r = a ( 1  -Qa2hx2)-’ 

with constant a is obtained only for A 2 =  C=O and corresponds to a vanishing 
improved tensor. For the remaining set of solutions we have to observe that we cannot 
restrict the discussion to solutions with bounded R here. If we start with given values 
for the parameters ]I2, A and C, the two possible values of the sign E correspond to 
spacelike/timelike regions of x 2  and we have to consider the solutions in both domains. 
Thus, if we take e.g. C < 0 (so that 0’’ is positive) and choose the values of C and A2 
appropriately (cf (I, 44)), R is of type (111) and therefore bounded for E = -1 (i.e. 
spacelike x 2  for the usual negative sign of A ) ,  but the corresponding solution in the other 
sector E = +1 (i.e. timelike x2) is of type (11) or (I) and diverges for infinitely many values 
of 7. The simplest example for this fact (which is hard to discover in Euclidean x space) 
is the solution with constant R, which is contained in type (111) both for h2 # 0 (cf (I, 47)) 
and A2 = 0 (cf (I, 56)) and corresponds to E = -1. For E = +1 the corresponding solution 
is (I, 46) which contains the cotangent and displays the infinities as mentioned above. 
The precise nature of the singularity at the light cone might differ from the one obtained 
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by our formulae by distributions concentrated at x 2 = 0 ,  since we have not paid 
attention to these terms when differentiating s. 

As for plane waves the other singularities of the solutions of type (I) or (11) do not 
affect the action. Changing again L by a divergence 

L + L ' = L - ' / *  6a [ a w ( ( P t ( P k )  -4/*G1 

we arrive at 

L' = -eC/(6Ax4) 

if we take 

G = s(ot(ok - [ ( P f ( o k  ds = R 2  - 2 [ T R 2  d7. 

The last term could be expressed in terms of elliptic integrals with R2 in the argument, 
so that G can be given as an explicit function of (Pk ,  if necessary. 

5. Determination of ek for plane and spherical waves 

For both plane and spherical waves we have to determine e k  from 

By elementary steps we obtain a linear system of first-order equations, which reads in 
matrix notation 

R 2 e = K . e  (40) 
with 

K = - K i = L T - l  2 SP L. 

In the complex case the solution is obtained by standard methods. The components of e 
are linear combinations of exponentials 

exp( ikl [ 0 T d x / R - 2 ( x ) )  

where ikl are the eigenvalues of K and the coefficients are determined up to some phase 
factors from 

e . e = l  

In this fashion we obtain e.g. for N = 1 the result of (I, 18) 

R2e't = SpK R41i t  = A2 = 4 SpK+K + ( N / 2 )  SpK SpKt t 

e l  = e  '' q5 - q50 = 1 [ ' clx/R-'(x) 1 = - iLI1 /2 .  (41) 
0 

For N = 2 the matrix K is traceless and the eigenvalues turn out to be 

kl= -k2= A. 
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We shall neither write down the coefficients of the exponentials in this case nor consider 
higher values of N, since the results are not of particular interest. Instead we shall 
consider the real case (O(N) model). Then the matrix L is real and antisymmetric and it 
is better to solve the equations (39) directly by representing the components of the real 
unit vector e in terms of appropriate angular variables. These are easy to understand, if 
we construct a mechanical analog by interpreting R as the radial coordinate of a moving 
point in N-dimensional space and T as the time. Then C is a multiple of the energy and 
Lkl are related to the angular momenta (The ‘real-field’ solutions of ref. [l] correspond 
to zero angular momenta). We shall consider the lowest few values of N. 

For O(2) we have 

e l  =cos q5 e2 = sin q5 

and obtain for q5 the same result as in the U(l)  case. For O(3) we have three constants, 
which form an axial vector under rotations 

L := (L23, L31, L12) h2 = L2.  

With the unit vector 

n = (el, e2 ,  e 3 )  = (sin e cos 4, sin 8 sin 4, cos e )  

(42) 

(43) 

the equation for n reads 

n x n  =R-’L.  (44) 

By a rotation we can always obtain 

L = (0, 0, 1) 

so that the orbital plane of the mechanical analog is the 12 plane. Then we have 

i = O  e = .ir/2 &R-2 (45) 

with the same solution as for N = 2. For N = 4 the six constants can be combined into 
two 3-vectors 

L =  (L23, L31, L12) F = (L14, L24, L34) h2 = L ~ _ C  F~ (46) 

(as in the Kepler problem, where F is the Lenz vector). Writing 

(el, e2, e 3 )  = n sin x e4 = cos ,y (47) 

with the same unit vector as for N = 3, we have 

R - 2 ~  = ( n  x ri) sin2 x Re2F = - n x - n  sin ,y cosx (48) 

and we infer, that 

L . F = O .  

By rotation we can always arrange for the choice 

L = (0, 0, 1) 

i = O  e = .ir/2. 

F = (f, 0,O). 

Then we obtain again 

(49) 
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The remaining equations for 4, x can be solved readily. After some elementary steps 
we obtain 

tan 4 = [ a1 joT dx K 2 ( x )  + tan-’(a tan 40)] / a  
I 

tan x = Iff sin x U *  = 1 + (f f l)’ .  

For higher values of N one may proceed in similar fashion. 

6. Lightlike plane waves 

The field equation (2) does not allow for plane-wave solutions (19), (20) with lightlike 
pl*.  We shall now show that there are plane-wave solutions with lightlike propagation 
character, if we allow for propagation in opposite directions. Let pl* be a fixed, lightlike 
vector ( p 2  = 0). We introduce a tetrad 

pl* =- P O  2” =-(1, -m) e t  = (0 ,  ei) i =  1 , 2  (52) 
1 
J5 &(I, m) 

where ei, m are three orthogonal unit vectors in 3-space. For the tetrad vectors we have 
then 

(53) e . .  e ,  = -8 . .  1 1  11‘ n 2  = f i 2  = n .  ei = f i  , ei = 0 n . f i = l  

Any vector a l* can then be represented by its lightlike components 
2 

uw=nl*a,+fic”a,+ e ta i .  
i = l  

We shall reserve the special notation 
A x, = n .  x = U xu = n .  x = v 

(54) 

( 5 5 )  

for the coordinate vector. 

be n and 2. Therefore we shall require 
For a plane wave of the type mentioned above, the only essential directions should 

ql* = nwqu +n*l*q, = ql*(u, U )  (56)  

and 

r = r (u ,  U )  

The field equations (9)/(14) amount to 

ek = ek(u ,  U), 

2a,a,r -Ar3  - 2h2q,qu/r3 = 0 

aoqu + auqu = 0. 

We shall be interested only in a separable solution, for which 

(57) 

4 u ,  v )  = R I ( U ) R 2 ( V ) .  (59) 

The field equation for r is separable, if the last term is a multiple of the second term. 
Therefore we put 

ququ = -w1m6 (60) 
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with a constant k .  The solution becomes 

R I =  [ 2 K ( a  + u)] - l I2  R2 = [ 2 K ’ ( b  + u ) ] - ” ~  

where a, b are related to the initial values, K is the separation constant and 

2 K K ’ = A  - 2 k A 2 .  (62 )  
The continuity equation for q” is solved by 

K 
(411, S”) = 4 ( A  - 2 k A 2 )  ( ( u + a ) ( u + b ) ) - 2 ( u + b ,  + + a ) )  ( 6 3 )  

where 

The constants have to be chosen in such a way that qu, qu and r are real. This leads to the 
restrictions 

IA I > 2/k lA2 

sgn A = sgn k = sgn(u + a) (u  + b) .  
(65 )  

The last condition shows that we have a solution only in two opposite quadrants of the 
(U, v )  plane, which have only the point U + a = U + b = 0 in common. The solution r is 
singular at this point and at the boundaries of the quadrants. 

The physical densities read 

L = ( 3 A  - 8 k A 2 ) F ( u ,  C )  ( 6 6 )  

T””=-AF(u, v )  n”n^”+6”n” L 

( 6 8 )  

(69) 

where 

F ( u ,  ~ ) = [ 4 ( h  - 2 k A 2 ) ( u  + u ) ( u  + b ) ] - 2 = a ( R 1 ( ~ ) R 2 ( ~ ) ) 4 .  

The positivity properties can be read off directly. For A < 0 both 6’’ and the generator 
density [Rohrlich 19711 

e,, = n̂ ,n,e’” ( 7 0 )  
of U displacements can be made positive by an appropriate choice of k. For A > 0 this 
remains true for BU,, but not always for 0’’~ 

The unit vectors ek can be determined in a similar fashion as in 8 5 .  The only 
difference is that we now obtain two partial differential equations instead of one. In the 
complex case we now have instead of equation (40 )  

r &e = q,K. e 

with the same matrix K as before (correspondingly for the real case). For the U(1) or 

(71) 2 r2&e = q , K .  e 
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O(2) model the solution is again of the form ( 4 1 )  with 

4-4=--1n(-) ~1 u + a  
2 v + b  

For higher N we obtain linear combinations of exponentials with arguments of similar 
structure. As a result the components of e exhibit infinitely rapid oscillations at the 
singular lines U + a = 0 and v + b = 0. 

The solutions obtained here can be slightly generalised, if one assumes that the last 
term in the field equation ( 5 8 )  for r is a linear combination of the first and the second 
term. Then one has two constants instead of k. The basic fact, that there is a solution 
only in the two opposite quadrants of the U ,  v plane is, however, not changed. 

Finally it has to be observed that there are also solutions with constant r and lightlike 
propagation character. If r is constant, we must have 

ququ = - -hr6 /2h2 .  ( 7 3 )  
The simplest solutions of the second equation ( 5 8 )  are obtained for constant qu and qo, 
i.e. 

qu = r3 ( -aA/2A2)1 /2  qu = r 3 ( - A / 2 a R 2 ) 1 / 2  ( 7 4 )  
with constant a. The sign of a has to be chosen opposite of that of A to render qu, qu 
real. The physical quantities read 

L = -hr4 /4  

The equations ( 7 1 )  for ek can be solved as indicated above. For the U(l)-or O ( 2 )  
model the phase reads 

( 7 6 )  

Another solution for qu, qu is obtained by replacing a by -(U + b ) / ( u  + a )  in the 
expressions ( 7 4 )  and ( 7 5 ) ,  whereby the sign of this ratio has to be chosen equal to that of 
A .  It turns out, however, that the equations for e have no solutions in this case (except 
for vanishing eigenvalues k,). 

All solutions obtained in this section can be understood also as solutions of the 
model in 1 + 1 dimensions. In this c s e  one takes the unit vector m parallel to the z 
direction and interprets U = ( x 0 -  z ) d 2  and U = ( x o +  z ) J 2  as transformed coordinates. 

q5 = r ( - - A a / 2 ) 1 / 2 [ ~  + a  + ( U  + b ) / a ] .  

7. Conclusions 

Exact solutions (Pk of the field equations of the (unconstrained) U(N) and O ( N )  (+ 

model have been obtained, which correspond to plane and spherical waves. For plane 
waves the constant vector p w  orthogonal to the wave fronts may be timelike, spacelike 
or lightlike. In the first two cases the solutions (which depend only on one variable p . x )  
may contain singularities. The Lagrangian and the energy-momentum tensor can be 
made finite by subtracting appropriate derivative terms (which do not affect global 
quantities). The integrated densities diverge for an infinite volume. For lightlike waves 
the solutions depend on two variables corresponding to propagation in opposite 
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directions. The solutions and the densities may contain singularities. These solutions 
may be understood also as solutions to the model in 1 + 1 dimensions. For spherical 
waves the solutions (except in some degenerate case) have meron-like singularities at 
the light cone and infinitely many additional singularities, located either inside or 
outside of the light cone, depending on the sign of the coupling constant. The latter 
singularities, which are perhaps not expected from analysis in Euclidean x space, can be 
made to disappear in the Lagrangian and the energy-momentum tensor by adding 
derivative terms, so that these densities contain only the meron-like singularity. For the 
energy-mmentum tensor this amounts to using the improved tensor found in another 
context (Callan et a1 1970) both for plane and spherical waves. The tensor has the 
structure postulated from general requirements in this context (Butera et a1 1979). 

All solutions found in this paper are based on a fundamental ansatz (13), which 
expresses the postulate, that internal symmetry and space-time structures are not 
mixed. If this is assumed, the internal symmetry group affects the physical densities 
only via a constant A’. Solutions with constant U ( N ) -  or O(N)-modulus of the field are 
then only possible for plane, but not for spherical waves. 
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